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Abstract. Air pollution causes millions of premature deaths annually, driving widespread implementation of clean air
interventions. Quantitative evaluation of the efficacy of such interventions is critical in air quality management. Machine
learning-based weather normalization (ML-WN) has been employed to isolate meteorological influences from emission-
drive changes; however, it has its own limitations, particularly when abrupt emission shifts occur, e.g., after an intervention.
Here we developed a logical evaluation framework, based on paired observational datasets and a test of ‘ML algebra’ (i.e.,
the ‘commutation’ of a normalisation step), to show that ML-WN significantly underestimates the immediate effects of
short-term interventions on nitrogen oxides (NOx), with discrepancies reaching up to 42% for one-week interventions. This
finding challenges assumptions about the robustness of ML-WN for evaluating short-term policies, such as emergency traffic
controls or episodic pollution events. We propose a refined approach (MacLeWN) that explicitly accounts for intervention
timing, reducing underestimation biases by >90% in idealised but plausible cases studies. We applied both approaches to
evaluate the impact of COVID-19 lockdown on NOx as measured at Marylebone Road, London. For the one-week period
after the lockdown, ML-WN estimates approximately 17% smaller NOx reductions compared to MacLeWN, and such
underestimation diminishes as policy duration extends, decreasing to ~10% for one-month and becoming insignificant after
three months. Our findings indicate the importance of carefully selecting evaluation methodologies for air quality
interventions, suggesting that ML-WN should be complemented or adjusted when assessing short-term policies. Increasing

model interpretability is also crucial for generating trustworthy assessments and improving policy evaluations.

1 Introduction

Air pollution remains one of the most pressing global environmental challenges, responsible for an estimated 4.2 million
premature deaths annually due to cardiovascular disease, stroke, lung cancer, and chronic respiratory diseases (Lee et al.,
2020b; Fuller et al., 2022). In response, policymakers worldwide have enacted diverse strategies to mitigate air pollution,
ranging from long-term emission reduction plans to short-term measures aimed at avoiding acute pollution episodes.

Evaluating the effectiveness of these interventions is critical for ensuring cost-effective policy design and maintaining public
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trust in governance. However, such evaluations are inherently complex due to the dynamic interplay of emission sources,
atmospheric chemistry, deposition processes, and, importantly, meteorological variability (Seo et al., 2018). Meteorological
conditions, in particular, exert a profound influence on observed pollutant concentrations, often masking or amplifying
changes in emissions over time (Shi et al., 2021). Compounding this challenge, fluctuations in human activities, such as
seasonal industrial output or agricultural practices, introduce additional variability that can obscure the true impact of
specific policy measures. Consequently, robust methodologies are needed to disentangle the confounding effects of
meteorology and periodic anthropogenic activities from the signal of emission changes attributable to policy interventions.

A promising approach to address this challenge is the machine learning-based weather normalisation (ML-WN) method
developed by Grange et al. (2018). This data-driven strategy has gained traction for its ability to isolate meteorological
influences from observed pollutant concentration trends, enabling clearer attribution of air quality changes to emission-
related factors. For instance, ML-WN has been widely applied to assess the transient air quality improvements during
COVID-19 lockdowns (Cole et al., 2020; Vu et al., 2019; Dai et al., 2021) and to investigate the impact of on ozone (O3)
concentrations and particulate matter compositions (Ding et al., 2023; Ding et al., 2021). Unlike traditional statistical
techniques, which often rely on rigid assumptions about linear relationships between variables, ML-WN flexibly captures
complex, non-linear interactions between meteorological parameters and emissions. This adaptability allows for more
efficient decomposition of weather-driven variability from policy-driven changes in pollution time series. Furthermore, ML-
WN circumvents the computational demands and inherent simplifications of chemistry-transport models (CTMs),
positioning it as a pragmatic tool for rapid policy evaluation.

Despite its advantages, the ML-WN framework is not without limitations. Its reliability depends on the performance of the
underlying machine learning model, which is susceptible to overfitting, especially when applied to sparse or noisy datasets.
The selection of input variables, such as wind speed, temperature, or boundary layer height, introduces potential biases if
critical predictors are omitted or redundant ones included. Additionally, while ML-WN excels at modelling non-linear
relationships, its "black-box" nature complicates interpretability, raising concerns about whether the model genuinely
captures causal mechanisms or merely correlates superficial patterns in its training data set. A more fundamental challenge
lies in the absence of a definitive "ground truth" for validating weather-normalized pollution trends, as real-world systems
are subject to concurrent socio-environmental changes that cannot be fully controlled. These limitations collectively hinder
precise quantification of policy impacts, risking misinterpretations that could misguide public health strategies or resource
allocation.

To address these gaps, we propose a logical benchmarking framework designed to evaluate the accuracy of weather
normalisation methods in isolating policy-driven changes in air quality. Focusing on paired nitrogen oxides (NOx) time
series, a key pollutant influenced by both meteorology and anthropogenic emissions, we systematically test the ability of the
ML-WN approach to recover known policy effects after removing meteorological noise. Our analysis reveals a critical
shortcoming: as currently implemented, ML-WN could underestimate the short-term efficacy of interventions, particularly

those with immediate impacts, such as traffic restrictions or industrial shutdowns. This underestimation arises from the
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method’s tendency to over-smooth transient signals in the data, conflating abrupt policy-driven changes with stochastic
meteorological variability. Left unaddressed, this bias could lead policymakers to undervalue the benefits of rapid-response
measures or misallocate resources toward less effective long-term strategies. In response, we introduce an alternative
weather normalisation strategy that explicitly accounts for transient policy signals by incorporating intervention-specific

covariates into the model architecture.

2 Materials and Methods
2.1 Data Source

To establish a robust baseline of urban air pollution patterns unaffected by the anomalous atmospheric conditions during the
COVID-19 pandemic, hourly nitrogen oxides (NOx = nitrogen oxide (NO) + nitrogen dioxide (NOz)) concentrations from
2017 to 2019 were analysed. These data were obtained from two Automatic Urban and Rural Network (AURN) sites in
London: Marylebone Road (MR, UKA00315) and North Kensington (NK, UKA00253). The MR site, situated within a
typical street canyon, represents a high-traffic urban environment with elevated NOx levels (Masson et al., 2020; Zhong et
al., 2016). In contrast, the NK site serves as an urban background location within much less direct traffic influence, reflecting
lower baseline pollution levels (Bigi and Harrison, 2010). Hourly surface meteorological variables, including ambient wind
speed (ws, in m s!) and wind direction (wd, in degrees), air temperature (temp, in °C), relative humidity (rh, in %), surface
pressure (sp, in hPa), and precipitation (precip, in mm) were obtained from the London Heathrow Airport weather station.

These data were retrieved using the ‘worldmet’ package from the National Oceanic and Atmospheric Administration

(NOAA) Integrated Surface Database (ISD), available at https://CRAN.R-project.org/package=worldmet. Missing values in
the meteorological and pollutant concentration datasets were handled by linear interpolation when gaps were less than three

consecutive hours; longer gaps were retained as missing to avoid introducing excessive bias through over-interpolation.

2.2 Machine Learning Weather Normalisation

The original machine learning weather normalisation (ML-WN) approach was introduced by Grange et al. (2018). Building
upon this methodology, we developed an independent version of weather normalisation for air pollutants using a gradient
boosting machine (GBM) model within H20.ai’s Automated Machine Learning (AutoML) framework. AutoML is a
function within the H20 platform—an open-source R/Python package for data analysis developed by H20.ai (Ledell and
Poirier, 2020). AutoML automates the iterative process of hyperparameter selection and streamlines the machine learning
pipeline, including preprocessing, feature engineering, model training, and model evaluation. It enables systematic
comparison of multiple algorithms (e.g., generalized linear models, random forest, GBMs) within a predefined
computational budget, and it provides a leaderboard ranking the models based on predefined metrics, such as model
performance and training time.

In this study, AutoML seeks the best function £°7(.) from an ensemble of 30 trained models 57 (.), for which:
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where Y, is the concentration of pollutant p (i.e., NOx) at a given time point  and site s; The function F5P(.) represents the
machine learning models that have been trained for predicting pollution. The model output is p and input features include a
time trend 7 and two matrices of regressors: X7 for temporal variables such as hour of the day and day of the week, which
act as proxies for diurnal and weekly emission patterns; and X/* for meteorological variables (wd, ws, temp, rh, sp, and
precip). Model training utilized 80% of the dataset, with the remaining 20% reserved for evaluation for each site. Full model
configurations and performance metrics are provided in Tables S1 and S2.

After the training process, the selected GBM model was applied to generate weather-normalised NOx concentrations due to
its strong predictive performance across both monitoring sites, achieving index of agreement (IOA) values of 0.84 (MR) and
0.82 (NK). In the ML-WN method, weather-normalised concentration ?ts'p are derived by resampling meteorological

variable X" while fixing temporal emission proxies X :

0P == 3 FIP (T, X, X 2)
where X%, is the i-th resampled meteorological dataset, and n is the total number of resampling (without replacement),
determined by the robustness of model predictions and the practicality of computational costs (e.g., used 300 times here).
Here, we also introduce an alternative strategy for weather normalisation, denoted as MacLeWN, to isolate emission-drive
trends from meteorological variability. Unlike ML-WN, which averages out meteorological effects while holding temporal
emission proxy’s constant, MacLeWN explicitly filters temporal variations (e.g., hourly, weekly cycles) that correlate with

emission patterns:
~ 1 n X .
VP == 3 (T X Xn) 3)

Here, Y7 represents time-trend-normalised concentrations, where temporal fluctuations (e.g., rush-hour traffic peaks) are
averaged out. The residual variability reflects meteorological influences acting on “averaged emission” levels. To quantify
these meteorological contributions, first we compute a baseline concentration ¥,** by resampling both emission proxies and

meteorology:

S, 1 n X . .

==y P XL X 4)

This baseline filters out all short-term variability, retaining only the long-term trend T. The meteorological impact factor

met_factor;? is then derived as:

s ?S,p_?S,p
met_factor;? = 100% x -+ yts_pt 5)
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Subsequently, weather-normalised concentrations y, are calculated as:

~S,p __ oObservations
(6)

Ve P

1—met_factort

2.3 Evaluation Methodology
2.3.1 Assessment Using a Theoretical Framework

Evaluating the efficacy of weather normalisation in isolating emission-driven air quality changes requires scenarios with
well-defined “ground truth” outcomes. However, real-world policy assessments are often confounded by overlapping
variables, making it challenging to disentangle meteorological and anthropogenic effects. To address this, we designed
idealised but plausible policy interventions targeting NOx reductions at the MR site, a high-traffic location where NOx
concentrations typically exceed urban background levels (NK site) by a quantifiable “road increment” (Harrison et al., 2021;
Bannister et al.,, 2021). After applying weather normalisation ML-WN, this increment represents the additional NOx
attributable to traffic emissions, calculated as the differences between weather-normalised MR (denoted as MR_wnNOx) and
NK (NK wnNOx) concentrations, as meteorological influences are expected to be minimized through the normalisation
process.

In our simulations, interventions temporarily eliminated the road increment during predefined periods (e.g., 1 week to 6
months), after which concentrations reverted to baseline. Practically, we achieved this by replacing MR _wnNOx
concentrations during the intervention periods with the equivalent-but-lower NK_wnNOx values, generating a synthetic time
series (synth wnNOx) that isolates emission-driven changes, enabling direct comparison with observed or re-normalised
data (Fig. S1). While this approach produces an idealized emission reduction that is unattainable in practice — due to
persistent traffic, street canyon effects, green infrastructure, and complexities of all kinds — it does provide a precisely
defined benchmark time series against which to test the logic and sensitivity of weather normalisation methods.

The synth wnNOx data can be used to quantify the ability of weather normalisation approaches during the policy window
(see Fig. S1, illustrating the difference between synth wnNOx and MR_wnNOx). To reintroduce meteorological variability
into the idealised scenarios, we quantified the hourly meteorological contribution factors (MCF) at the MR site using the

relative difference between observed NOx and weather-normalised concentrations:

MR NO  MRWnNOy _ .MR.NOx
MCE,™""% = 100% X £ CMR_WnN(tJX 7

t

C,fw R-NOX and CtM RwnNOx represent the observed and weather-normalised NOx concentrations at a time point ¢, respectively.

Here, a positive MCF indicates meteorological conditions enhancing pollutant dispersion (lower observed NOx), while
negative values reflect conditions exacerbating local accumulation (Fig. S2). These contributions were applied to

synth wnNOx to simulate “observed” concentrations under policy interventions, denoted as reconstitute NOx (recon_NOx):
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Outside policy windows, recon_NOx recovers precisely actual MR observations; during interventions, differences between
recon_NOx and NK NOx reflect both emission reductions and site-specific meteorological interactions (Fig. S3), such as
reduced ventilation in the MR street canyon (Jeanjean et al., 2017; Dai et al., 2022).

One final step completes the assessment of the approaches to weather normalisation. By reapplying weather normalisation to
recon_NOx, we generated a re-normalised time series (wn-recon_NOx). In theory, wn-recon NOx should closely match, if
not exactly replicate, the synth wnNOx if the method perfectly isolates emission effects. That is to say, ideally, the weather
normalisation operation should ‘commute’ algebraically. Discrepancies between the two normalised time series indicate
systematic biases in the weather normalisation process, quantifying over- or underestimation of policy impacts. This
comparison provides, to our knowledge, the first evaluation of the accuracy of machine learning weather normalisation
approaches in assessing the influence of policy interventions on air quality. The framework described above is generalisable
to any policy setting in which the policy impact is masked by weather-like ‘noise’. Figure 1 shows the schematic diagram for
the whole evaluation process, and Table 1 provides a comprehensive list of terminology for NOx time series used in this

study.

NOXx obs. from NOx obs. from
Marylebone Road North Kensington
(MR_NOx) (NK)

Meteorological Weather
Contribution Factors Normalisation
(MCF) at MR \ 4 \ 4

NOXx affected by NOx affected by Calculate
Percentile Emissions at MR Emissions at NK Difference
Difference (MR_wnNOXx) (NK_wnNOx)  |—

L J Different Po";:gf ::;: on
Policy Window

Synthetic NOx with Policy Interventions A
affected by Emissions at MR

(syn_wnNOx) Identical .

I

Add Meteorological
Contribution I
I

Reconstitute NOx with Policy Interventions
affected by Emissions and Meteorology at MR *
(recon_NOx)

Policy Effects on
Weather >_)
Normalisation v NOx at MR

Reconstitute NOx with Policy Interventions
affected by Emissions at MR —
(wn-recon_NOx)

Figure 1: The schematic diagram showing the analytics pipeline to quantify the ability of weather normalisation approaches.
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Table 1: A summary of the NOx timeseries used in the study.

Name Description

MR _NOx NOx observations at Marylebone Road

NK NOx NOx observations at North Kensington

MR_wnNOx Weather normalised NOx concentrations at Marylebone Road
NK_wnNOx Weather normalised NOx concentrations at North Kensington

synth wnNOx NOx at Marylebone Road with “interventions” affected by only emissions
recon_NOx NOx at Marylebone Road with “interventions” affected by emissions and meteorology

wn-recon NOx  NOx at Marylebone Road with “interventions” affected by only emissions (reconstituted)

We designed scenarios mimicking diverse real-world policies, including sustained interventions (1 week—6 months), phased
reductions (3—6 months), and cyclic interventions (1-month intervals) (Table 2, Fig. S1). These scenarios represent different
types of policy interventions and help assess how the weather normalisation methods perform under different temporal
patterns of emission changes. To ensure that our conclusions are not model-specific, we replicated our analysis using
different machine learning approaches, including eXtreme Gradient Boosting (XGBoost) and distributed random forest
(DRF) models. Performance metrics for these models (Tables S7-S8) and consistent results across these algorithms
(Figs. S11-S12) indicates the generalizability of our findings. Following the methodological framework described above, we
further extend the assessment to the MacLeWN. The weather normalised dataset, the meteorological factors, and the
“original” dataset influenced by both emissions and meteorology were presented in Figs. S6-S8, respectively.

Table 2: Overview of air quality intervention durations and strategies for eight test scenarios (S1-S8). In the second part of each

scenario name, “s” = sustained intervention, “p” = phased-out intervention, and “c” = cyclic intervention. Intervention durations
are for a number (1, 2, 3, or 6) of weeks (‘w'), or months (‘m”).

Scenario Intervention period Description

S1 slw 1%t Aug 2018 — 7™ Aug 2018 Sustained intervention for one week

S2 s2w 15t Aug 2018 — 14 Aug 2018 Sustained intervention for two weeks

S3 slm 1t Aug 2018 — 31% Aug 2018 Sustained intervention for one month

S4 s3m 1% Aug 2018 — 315 Oct 2018 Sustained intervention for three months
S5 s6bm 1% Aug 2018 — 31" Jan 2019 Sustained intervention for six months
S6_p3m 1 Aug 2018 — 315 Oct 2018 Phase-out intervention for three months
S7 p6m 1% Aug 2018 — 31 Jan 2019 Phase-out intervention for six months

S8 clm 1%t Aug 2018 — 30" April 2019 Cyclic intervention at one month interval

2.3.2 Application of Weather Normalisation to COVID-19 Lockdown Data

To further evaluate the performance of the ML-WN and MacLeWN approaches, we applied both techniques to analyse
changes in NOx concentrations during the COVID-19 lockdowns at London Marylebone Road, which will provide a basis to
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assess emission reductions under abrupt, real-world conditions. Prior studies have used weather normalisation to isolate
lockdown effects, but the lack of a definitive “ground truth” for actual pollutant reductions during lockdowns makes it
challenging to evaluate these methods absolutely. Our analysis introduces a direct comparison between the ML-WN and
MacLeWN under identical scenarios, allowing us to assess their relative performance in isolating lockdown-induced
emission changes from meteorological variability.

The lockdown in London was first announced on March 23", implemented on March 26%, and eased on June 23, 2020
(Davies et al., 2021). The COVID-19 lockdown measures led to an acute drop in NOx levels at these sites (Lee et al., 2020a).
We gathered hourly concentrations of NOx from 2018 to 2021 for Marylebone from AURN. The corresponding
meteorological data (i.e., wd, ws, RH, temp, sp, precip) were obtained from Heathrow Airport. The predictive variables for
the machine learning models included temporal variables and meteorological variables as mentioned above. Weather-
normalised daily NOx concentrations around the time of the lockdowns are presented in Fig. S10.

After weather normalisation, we adopted an analytical framework to evaluate the effects of the lockdowns on NOx
concentrations as used in Shi et al. (2021). The baseline period for the lockdown was defined as the one month-to-one week
preceding each lockdown (i.e., excluding the final transitional week, Fig. S10), with post-lockdown impacts assessed during

the first week of restrictions:

ACNOX,t = CNOX,t - CNOX|t 9
Puoge = 100% X “‘;“v’—zi” (10)

CN0x|t represents the average value of NOx at a given hour during the baseline period, Cyo, . represents the NOx

concentrations at a time ¢ during the first week, one month, or three months after the lockdown, ACy, ¢ and Py, + represent
the absolute and percentage changes in NOx concentrations in 2020, respectively.

Emissions within a given year are subject to temporal trends, such as gradual policy shifts, economic fluctuations, or
seasonal patterns like reduced heating fuel use during winter-to-spring transitions. These trends, unrelated to lockdown
measures, risk conflating long-term or cyclical changes with short-term lockdown effects. To account for this, we detrended
the data by comparing 2020 NOx concentrations against the averaged values from the corresponding periods in 2018 and
2019. This two-year baseline (i.e., for “trend”) was selected to mitigate the influence of interannual variability. The

lockdown-driven changes in NOx concentration (Cyo,,¢) and their percentage equivalents (4Py,, ;) were calculated as:

ACXIOX,t = ACNOX,t - ACAZ/gﬁft_zow (11)
ACq
APp, . = 100% X %;“ (12)
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3 Results
3.1 Comparison of two approaches in the theoretical framework

Figure 2(a) presents a comparative analysis of NOx reductions, contrasting the “actual” intervention outcomes (red bars)
with the predicted simulations derived from the ML-WN approach (blue bars) across eight idealised intervention scenarios
(S1-S8, Table 1). The consistent discrepancies between the red and blue bars indicate that the ML-WN approach
systematically underestimates the effectiveness of policy interventions, particularly in short-term scenarios. This
underestimation occurs because the ML-WN method may not fully capture abrupt changes in emission patterns due to its
reliance on historical data and the smoothing effects inherent in machine learning models. Such underestimation has not been
reported before, primarily because it is challenging to detect when comparing a single time series with and without weather
normalisation.

Our results show that the underestimation is particularly significant for short-term interventions. For example, for the one-
week sustained intervention (S1_slw), the ML-WN approach underestimates the policy effects by 101.1 pg m?,
corresponding to a 42.2% discrepancy. Such substantial underestimations could lead to significant misjudgements of the
short-term air quality improvements and the resultant health impacts of air pollutants (Meng et al., 2021). As the duration of
the intervention increases to two weeks (S2_s2w) and one month (S3_slm), the underestimation decreases to 54 pg m
(23.5%) and 35.2 ug m (13.8%), respectively. This pattern continues for policy interventions sustained over longer periods,
with the underestimation further decreasing to 17.9 ug m™ (6.3%) for three months (S4_s3m) and 7.9 pg m™ (less than 3%)
for six months (S5 _s6ém). These results indicate that the ML-WN method becomes more accurate over longer intervention
periods, possibly because the model adjusts to new emission patterns over time.

Furthermore, the degree of underestimation is more associated with the duration of policy interventions than with the type of
policy (i.e., sustained, phased out, or cyclic). For example, both sustained and phased-out policies spanning three and six
months show similar levels of underestimation. In contrast, cyclic policies with one-month intervals (S9_clm) result in an
underestimation of 16 pg m? (4.8%), which is smaller compared to the underestimations observed in other policy types.
Although these discrepancies are smaller compared to short-term interventions, they are still significant when considering
long-term average threshold values for public health impacts (Faustini et al., 2014).

Figure 2(b) illustrates the time-dependent discrepancies in the underestimation of policy impacts on NOx concentrations, as
estimated by the ML-WN approach under different intervention scenarios. For example, S6_p3m scenario, representing a
phased-out policy implemented over three months, has an overall underestimation of 16.6 ug m (6%, light green bar) but
exhibits a 38.1 ug m3 (14.4%) underestimation in the first week (light blue bar). These results show that, for policies with
immediate effects (i.e., sustained policies), the initial underestimation of their efficacy by the ML-WN approach is most
pronounced in the early stages but diminishes over time. The extent of this underestimation is inversely related to the
duration of the policy implementation. As the duration of the policy extends beyond one month, the discrepancy between the

anticipated and “actual” impact in the initial stages decreases significantly.
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Figure 2: Average intervention effects on NOx concentrations at Marylebone Road (MR) under different scenarios, including
sustained interventions lasting from one week (S1_s1w) to six months (S1_s6m), phased-out interventions over three (S6_p3m) to
six months (S7_p6m), and cyclic interventions with a one-month frequency (S8_clm). A and C: The red bars represent the
“actual” intervention effects based on the theoretical evaluation framework, while the difference between red bars and effects
estimated by weather normalisation approaches indicates the extent of underestimation; B and D: The bars represent
underestimated average intervention effects at different time periods as a percentage. Note the different y-axis ranges in B and D.

Specifically, during the first week after policy implementation, the underestimation of NOx reduction is 51.9 ug m (13.6%)
for a two-week policy (S2_s2w), diminishing to 13.4 pg m3 (5.3%) for a policy sustained over six months (S5_s6m).
Similarly, the net underestimations of NOx reduction after two weeks are 54 ug m3 (23.5%), 33.3 pg m> (13%), 19.4 pg m
(7.5%), and 11 pg m> (4.2%) for S2_s2w, S3_slm, S4 s3m, and S5 _s6m, respectively. In contrast, phased-out policies,
which gradually reduce interventions over time, present a different pattern. Although their cumulative effects align with
those of sustained policies, the initial weeks show a marked underestimation of impact. Figure 2(b) shows that a three-month
phased-out policy (S6_p3m) results in an overall underestimation of 16.6 pg m (6.0%), and a six-month policy (S7_p6m) at
6.4 pg m> (1.9%). However, the first-week underestimations are 38.1 pg m (14.4%) and 29.9 ug m> (12.1%), respectively.
Similarly, the cyclic policy (S8 clm) shows a 7.3% underestimation in the first week, which is somewhat higher than the
overall underestimation observed over the six-month duration (4.8%).

By employing the updated machine learning approach (MacLeWN), these underestimations were mitigated, as shown in
Figures 2(c) and 2(d). The results show a strong agreement between the “known” NOx reductions resulting from idealised
policy interventions and those simulated by the MacLeWN approach. While minor discrepancies are observed in the time-
dependent analysis in Fig. 2(d), these variations are consistently small, each remaining below one percent, and showing
improvements of greater than an order of magnitude, often by a factor of 20 to 50, compared to the underestimations

observed with the ML-WN approach as in Fig. 2(b). Further details are provided in Tables S4 and S5, and Figs. S5 and S9

in Supporting Information.
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3.2 Comparison of two approaches in the lockdown scenario

Figure 3 provides the impact of lockdown measures on NOx concentrations near the roadside at London Marylebone Road
air quality monitoring site. NOx reductions were assessed over one week, one month, and three months after the lockdown
implementation by using the direct observations, the ML-WN, and the MacLeWN approaches, respectively. The bars depict
the average detrended concentrations changes at the MR site over the policy implementation period following lockdown, and
the error bars denote the standard error of the mean. For one-week lockdown effects, the observed NOx decreased from
153.9 to 27.5 pg m™ (-82.1%); the ML-WN estimates a decrease from 158.1 to 76.0 ug m> (-51.9%); and the MacLeWN
estimates a decrease from 153.2 to 47.7 ug m> (-68.9%). In the case of one month intervention effect, direct observations
indicate a NOx decrease from 134.3 to 43.6 pg m> (-67.5%), the ML-WN indicates a decrease from 150.9 to 71.9 pg m™
(-52.3%), and the MacLeWN points to a -62.3% reduction from 141.3 to 53.2 pg m>. For three-month lockdown effects,
NOx reductions through the observations, the ML-WN, and the MacLeWN are -58.1+6.6 ug m™ (-53.7%), -71.9+6.0 ug m*
(-51.3%), and -72.8+8.1 pg m* (-57.4%), respectively (Table 3). These results are consistent with the theoretical evaluation
presented above, as the ML-WN approach estimates around 17% lower policy impact compared to the MacLeWN approach
but decrease with longer policy implementation time (i.e., about 10% lower for one-month lockdown and is insignificant for

three-month effect).

one-week one-month three-month

E -10
ap
=
5 40
c
2
w -70
©
s -53.7%
g 100
0
= . 0 -57.4%
S 67.5% | 62.3%
> '1 30
O 82.1%  68.9%

-160 London Marylebone Road
. Obsarvstion Weather normalisation Updated weather

(ML-WN) Normalisation (MacLeWN)

Figure 3: Intercomparison of detrended NOx concentration changes at London Marylebone Road using direct observations, the
weather normalisation (ML-WN), and the updated weather normalisation (MacLeWN) approaches. The bar graphs in the panel
show concentration changes (C,) in NOx over one week, one month, and three months average following lockdown
implementation, respectively. Each graph contrasts the raw observation data (dark blue), ML-WN changes (light purple), and
MacLeWN changes (dark green). For each bar, the average percentage changes (P;) has been calculated and presented.
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Table 3: Absolute and percentile COVID-19 lockdown impacts on NOx concentrations at London Marylebone Road, analysed
through direct observations, the weather normalisation (ML-WN), and the refined weather normalisation (MacLeWN) after
measures implemented one week, one month, and three months, respectively.

Intervention period  Method Concentration (ug m~) Percentage (%)
Observation  -126.0+9.1 -82.1+£5.9

One week ML-WN -82.1+5.5 -51.9+3.4
MacLeWN  -105.0+8.7 -68.9+5.6
Observation  -90.7+8.7 -67.5+6.5

One month ML-WN -79.0+6.6 -52.3+4.4
MacLeWN  -88.1£9.5 -62.3+£6.7
Observation  -58.1+6.6 -53.7+6.1

Three months ML-WN -71.9+6.0 -51.3+4.3
MacLeWN -72.8+8.1 -57.4+6.4

Note: In each case, the data are detrended following the method in Sect. 2.3.2.

4 Discussion

Accurately assessing the impact of policy interventions on air quality remains a critical challenge, as meteorological
variability often obscures the signal of emission-driven changes. While machine learning-based weather normalisation (ML-
WN) has emerged as a powerful tool to disentangle these effects, our findings reveal its limitations in evaluating short-term
interventions. For example, we showed underestimations of up to 42% in the quantified effectiveness of one-week policies
(Fig. 2 and Figs. S4 and S5), indicating that the ML-WN may not fully capture abrupt, non-linear changes in emissions
following rapid policy implementation. This discrepancy highlights a fundamental tension: while ML-WN works well at
isolating long-term meteorological influences, its reliance on historical patterns may render it less sensitive to transient
disruptions in emission regimes.

The root of these uncertainties lies in the interplay between model architecture, variable interdependencies, and real-world
complexity. The accuracy of ML-WN depends on the predictive robustness of its underlying algorithms, which must
generalize beyond training data to capture sudden shifts in emissions. However, temporal variables (e.g., hour, day, season)
and meteorological parameters (e.g., temperature, wind speed) are deeply intertwined in environmental systems. Temporal
indicators generally act as proxies for human activity-driven emissions, yet they correlate systematically with meteorological
cycles, such as solar radiation peaks at midday, atmospheric stability varies diurnally, and seasonal weather patterns drive
recurring emission scenarios (e.g., heating demand in winter). These collinearities create a “proxy trap”, where models may
conflate emission-driven trends with weather-driven fluctuations. Tree-based ensembles, while resilient to multicollinearity
in prediction tasks, face interpretability challenges: variable importance metrics become unstable when predictors are
correlated, splitting attribution across redundant features. Consequently, the “brute force” resampling central to ML-WN
(i.e., simulating counterfactual meteorological conditions across time), may inadvertently dilute the signal of abrupt policy

impacts, particularly when interventions disrupt established correlations between time and emissions.
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Further limitations arise from the fidelity of input data and the physical plausibility of resampled scenarios (Kilkenny and
Robinson, 2018). ML-WN assumes meteorological variables can be independently perturbed, yet real-world weather systems
exhibit tightly coupled dynamics (e.g., temperature-humidity relationships, land-sea breeze cycles). Resampling risks
generating unphysical combinations, for instance, applying wintertime temperature inversions to summer datasets could
distort ozone chemistry or particulate dispersion pathways (Vu et al., 2019). Moreover, meteorological conditions absent
during the model training phase can compromise predictive accuracy, especially in urban areas subject to complex and
routine meteorological events. In coastal urban areas, for instance, diurnal breeze patterns regulate pollution advection
(Geddes et al., 2021; Di Bernardino et al., 2021), but models trained on sparse temporal data may fail to resolve these
mesoscale processes, leading to biased normalisations.

The application of ML-WN and MacLeWN to COVID-19 lockdown data highlights the practical relevance of our findings.
The lockdown results are consistent with our simulations under idealised conditions (Fig. 2), where ML-WN’s smoothing of
transient signals could lead to systematic underestimation and MacLeWN shows clear larger policy intervention effects. It is
important to acknowledge that even the MacLeWN approach may not entirely capture all high-frequency, weather-like
variability of air quality. Reliance on temporal variables as proxies for emissions, rather than direct emission factors, means
some meteorological effects correlated with time (e.g., temperature variations throughout the day) may still confound the
model. Nonetheless, MacLeWN represents an improvement in assessing the immediate impacts of short-term policy

interventions.

5 Conclusions

In this work, our logical analysis shows that the widely used machine-learning weather normalisation (ML-WN) approach
could markedly underestimate the immediate benefits of short-term air quality interventions. Across eight idealised but
plausible NOx-reduction scenarios at London’s Marylebone Road, the ML-WN framework missed up to 42 % of the one-
week reduction signal and still understated one-month effects by ~14 %. We proposed a refined weather normalisation
method MacLeWN that significantly reduced such biases, bringing re-normalised concentrations into near-identity with the
known synthetic truth. When applied to the real-world COVID-19 lockdown on Marylebone Road, London, the ML-WN
tended to yield more conservative estimates compared to MacLeWN, particularly for shorter intervention periods at one
week (~52% vs. 69%). This further highlight that the ML-WN smooths away a substantial fraction of the abrupt emission
signal.

While the proposed MacLeWN refinement is self-consistent, and potentially reduces underestimation biases in weather
normalization, its reliability remains contingent on the explainability of the underlying machine learning models,
necessitating cautious interpretation and continuous evaluation. Importantly, improving model transparency can increase
confidence in the assessments provided by machine learning. The performance of machine learning models is directly

influenced by the quality and relevance of their input variables (Geiger et al., 2020). Incorporating specific, causally relevant
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predictive variables—such as traffic counts, fleet compositions, and industrial emission data—can improve both model
performance and explainability in air quality simulations. Strategies such as assessing multicollinearity using statistical
measures like the Variance Inflation Factor (Thompson et al., 2017), applying dimensionality reduction techniques like
Principal Component Analysis (Abdi and Williams, 2010), employing alternative importance measures less sensitive to
correlation (e.g., permutation-based methods) (Mi et al., 2021), and using model interpretation tools like partial dependence
plots (Greenwell, 2017) and SHapley Additive exPlanations (SHAP) values (Gebreyesus et al., 2023) can be employed.
These approaches not only improve predictive accuracy but also enhance model robustness and interpretation, making them
more reliable tools for evaluating the effectiveness of environmental policies.

Our findings have significant implications for the evaluation of air quality interventions and formulation of environmental
policies. Although the underestimation of pollutant reductions by the ML-WN decreases for interventions sustained over
three months (< 5%), the potential to overlook immediate benefits remains a concern, especially for short-term and
emergency measures that necessitate precise evaluation for timely public health responses. Examples include policies
implemented during events like sports gatherings and festivals (Yao et al., 2019; Singh et al., 2010; Andrews, 2008),
emergency responses to air pollution episode (Tian et al., 2019), and abrupt air pollution incidents such as fireworks
displays, industrial accidents, volcanic eruptions, warfare, and wildfires. Additionally, significant social changes, such as
those observed during the COVID-19 pandemic, have demonstrated how rapid shifts in human activity can affect air quality
(Zangari et al., 2020; Gualtieri et al., 2020). Underestimation of benefits may lead to underappreciation of policy measures
and unproper resource allocation, affecting public confidence and future support for environmental initiatives. Moreover,
weather normalisation errors propagate into downstream methodologies like the Synthetic Control Method (SCM), which
constructs a synthetic treated unit from a combination of control units that were not subjected to the intervention, aiming to
estimate how pollutant concentrations would have evolved in the absence of the policy (Mork et al., 2024). SCM Controlling
for meteorological factors is important to isolate the effects of the intervention from natural weather variations that influence
pollutant behaviour and dispersion (Dai et al., 2024). However, if the weather normalisation method introduces inherent
underestimation bias in the treated unit, it would lead to a smaller apparent difference between the treated and synthetic

control units, thereby skewing the assessment of the true effect of policy interventions (Ben-Michael et al., 2021; Xu, 2017).
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Code Availability

Code for Machine learning-based Weather Normalisation is accessible at https://github.com/clnair-ascm/agpet.

Data Availability

Air quality data at Marylebone Road and North Kensington can be retrieved from the Automatic Urban and Rural Network
(AURN): https://uk-air.defra.gov.uk/networks/network-info?view=aurn. Meteorological data can be accessed at NOAA

integrated surface database (ISD): https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database.
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